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Information
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Information

� What it does mean?   

− Refers to any collection of symbols or signs produced either through

� the observation of natural/artificial phenomena or

� cognitive human activity

− With a view to help an agent understand

� the world,

� the current situations,

� making decisions,

� communicating with other human or artificial agents
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Information

� Basic aspects   

Origin

Objective Information

o Sensor measurements

Subjective Information

o Direct perceptions of 

events

o Uttered by individuals 

(testimonies)

Form

Quantitative / Numeric

o Numbers, intervals

o Functions, statistics

Qualitative / Symbolic

o Natural Language

o Logic
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Information

� Kind of information 

Singular Information 
(Data)

Refers to

o a particular situation

o a response to a question

Stated as 

o An observation 
(A patient has fever at a given
instant)

o A testimony (The killer was a man) 

Can be unreliable, imperfect 
(imprecise, uncertain) 

Generic Information 
(Knowledge)

Refers to

o a collection of situations

o a population of entities

Expressed as 

o Physical law, statistical model 
(Built from a representative 
sample of observations)

o Piece of commensense
knowledge (Birds fly) 

Presence of exceptions 
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A Typology of Defects
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A typology of defects

Information

Uncertainty
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Subjectivity

LIG - Grenoble , 09 February 2016
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Subjectivity

� Subjective information

− Very common for human beings

− Inherent in the way they naturally interact with their environment

− Depends on the person providing and interpreting the information

− Example

� Sensory information is subjective 

� Human agent has a different capability for seeing colours 

� Aspects of subjectivity 

− Perception and sensory information

� Spammer worker, Beautiful city, Nice weather, … 

− Expressions du language naturel 

� Very young person, Close to the city centre, Big building … 
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Subjectivity

� Nature of Subjective information

− Expressed either  

� Qualitatively by means of words with all the vagueness of natural language, 

or 

� Numerically through estimations or approximate values.

� Subjectivity is everywhere

− Open sources, Blogs, Forums, Image and Video Databases, …

− Multiple factors of subjectivity have to be dealt with

� Data contain subjective elements in texts or images

� User queries based on elements of natural language, may contain 

subjectivity
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Subjectivity

� Representation Framework

− Intelligence Computational (Soft computing, Fuzzy sets, Rough sets, …) 

offers appropriate approaches to manage subjectivity 

� It allows us to represent imprecise, vague, approximate or incomplete 

descriptions in an unified way

− The key concept is the membership functions of fuzzy sets

� Generalizes the idea of class to the categories with ill-defined and unclear 

boundaries 

� which can be shared by several people and,

� modified to come to a consensus if necessary.
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Subjectivity

� Fuzzy-Set-Based Representation

− Repesentation of Young 

− Advantages of the gradual representation

� Less sensitive to the choice of thresholds

� It is often more informative than Boolean representation : plausibility ranking

between the values

Age

1

0
35

Age

1

40
0

30

Rather than the 
interval Preferred the 

fuzzy set
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Subjectivity

� Fuzzy-Set-Based Representation

− Context/environment dependent: Consider the description Expensive

Student Perception

1

200 250

1

0
350300

Engineer Perception

Mobile 
Price

Mobile 
Price
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Subjectivity

� Refine subjective information

− Use of Linguistic Modifiers 

− Let the subjective description Young

− Reinforcement  the meaning

� Very Young, … 

− Weakening the meaning

� More or less Young, …

− Other types of modifiers

− Fairly, slightly, moderately, ….
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Subjectivity

� Aggregation operators : A rich and large panoply

− Complex Subjective Categories

� Worker less competent and fairly certain

− Conjunctive aggregation : Triangular Norms Operators

− Disjunctive aggregation : Co-Norms Operators

− Compensatory aggregation : Several Variants of the Average Operator

− Linguistic Quantifiers : Most, Almost all, Many, At least, …

� Almost all the workers are spammers

� Most of the answers are similar

− Importance in Categories

� Assigning importance to a category : Weighted aggregation

� Assigning importance to a set of categories : Choquet/Sugeno Integrals
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Incompleteness
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Incompleteness

� Meaning  

− It is not sufficient to allow the agent to answer a relevant question in a given context

− To not know precisely the value of a parameter 

� Imprecision is a form of incompleteness 

� Related to the content of information

− Kind of questions: what is the current value of some quantity v? 

� The imprecision is not an absolute notion. It depends on the proper frame S

� Let v denotes the age of a person 

� S = {minor, major}, v = minor is precise

� S = {0, 1, …, 150} (in years), the term minor is imprecise, it provides incomplete 

information if the question of interest is to know the birth date of the person
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Incompleteness

� Disjunctive sets 

− Sets of values that are mutually exclusives 

� Used to represent incomplete information (expressed by imprecision)  

� v = age(Pierre) ∈ {20, 21, 22, 23, 24, 25}, i.e., v = 20 ∨ 21 ∨ 22 ∨ 23 ∨ 24 ∨ 25 

� Only one value is real value

� Conjunctive sets 

− Represent precise piece of information  

� v = sisters(Pierre): the set of subset of possible names for Pierre’s sisters

� v = {Marie, Sylvie}: is precise information on S = 2NAMES

HAA1
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Incompleteness

� Sets and Sets: Do not mix up 

− A set-valued variable X : the set of languages a person can speak,

A = {English (and) French}, it is conjunction of values, and a real set.

X = A is precise

− An ill-known point-valued variable x : E = {English (exor) French},

it is a disjunction of values, and an epistemic set.

x ∈ E is imprecise.

HAA1
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Uncertainty
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Uncertainty

� Meaning

− Understood as the inability to say whether

� A proposition is true or false

� An event will occur or not 

− Examples

� Daily quantity of rain in Paris

� Birth date of Brazilian President

� Identification of car involved in an accident

− To qualify uncertainty, one assign a token of uncertainty 

� Numerical

� Symbolic (qualitative token): (very possible, not absolutely certain)

� Interval  
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Uncertainty
� Origins

Variability of observed 
natural phenomena: 

randomness

Dailiy quantity of rain in
Paris

Failure time of a machine

� Probabilistic answer in
function of the frequency
observed

� Repeatable events

Lack of information: 
incompleteness

Birth date of Brazilian President

� Answers are more or less
perfect in function of the state
of knowledge of an agent

� Non-repeatable events

Conflicting 
testimonies/reports: 

inconsistency 

Identification of car involved in
an accident

� The more sources, the more 
likely the inconsistency
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Uncertainty Models



25

Sets

� Sets  

− Good for representing incomplete information, but often crude representation of 

uncertainty

� Agent is not certain about the order relation r between two real parameters a1 and a2

� He expresses r ∈ {<, =, >}

− Limitations

� The larger disjunctive set, the more uncertain relation

� No quantification of uncertainty inherent to the available knowledge

� Missing order between the elements of the set: not able to express that an element is

more plausible than another.

Need of uncertainty models that are 
more informative than sets
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Weighted Models

� Weighted models  
− v: vector of attributes relevant for the agent

− S: domain of v (called a frame: set of all states of the world)

− A: subset of S, called event or proposition that asserts v ∈ A

− Principe

� Assign to each event A a number g(A) in the unit interval

� g(A) degree of confident of an agent in the truth of v ∈ A  

− Natural requirements (of the confidence function g)

� g(∅) = 0: the contradictory proposition ∅ is impossible 

� g(S) = 1: the tautology S is certain

� If A ⊆ B then g(A) ≤ g(B): monotonicity with w.r.t. inclusion (the more imprecision a 

proposition, the more certain it is)

− Important consequences 

� g(A ∩ B) ≤ min(g(A), g(B))

� g(A ∪ B) ≥ max(g(A), g(B))
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Imprecise Probabilities

P* , P*

Belief Functions

Bel, Pl

Weighted Models

Clouds Model

Probability Theory

P

Possibility Theory

N, ΠΠΠΠ
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Probability theory

� The oldest among uncertainty theories

� The most widely acknowledged

� Distribution of probability p  
− Let (Ω, A, P) a probability space 

− A probability distribution p is a non-negative mapping 

p : Ω → [0, 1] 

such that Σω∈Ω p(ω) = 1

� Measure of probability P
− Let A ⊆ Ω, an event

� P(A) = Σω∈A p(ω)  

− Axioms 
� P(∅) = 0; P(Ω) = 1

� ∀ A, B ⊂ Ω, if A ∩ B = ∅, P(A ∪ B) = P(A) + P(B) (Additivity)

� ∀ A ⊂ Ω, P(A) = 1 − P(Ac), with Ac is the opposite event of A (Duality)
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Probability theory

Two type of 
interpretations 

Frequentist 
(randomness)

� Capture variability 
through repeated 
observations

� Rely on statistical data

Need good knowledge of 
the (physical) phenomena

Subjective (belief) 

� Describes a person's opinion 

� Models unreliable evidence

� Not necessary related to 
statistics

� Precise probability values 
are difficult

Intervals are more faithful 
(sometimes linguistic terms)
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Probability theory

� Probability theory relies on the use of a single probability distribution to
represent uncertainty

� This can raise some serious problems

− Instability: The same state of knowledge represented by incompatible
distribution probabilities

� Example: Extra terrestrial life 

Generally, people ignore whether there is a life or not

P1(Life) = P1(Nolife) = 1/2 on S1 = {Life, Nolife}

The agent can discern between animal life (Alife) and vegetal life only (Vlife), 

with the frame S2 = {Alife, Vlife, Nolife}, in this case the ignorance expresses

P2(Alife) = P2(Vlife) = P2(Nolife) = 1/3 

The two representations P 1 and P2 of ignorance are 

clearly inconsistent
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Probability theory

� Probability theory relies on the use of a single probability
distribution to represent uncertainty

� This can raise some serious problems

− Ambiguity: No difference between uncertainty due to incomplete information and
uncertainty due to randomness

� In the dice game,

� Agent 1 knows that the dice is unbiased 

P(1) = … = P(6) = 1/6

� Agent 2 ignores everything about that dice (He has not try it)

P(1) = … = P(6) = 1/6

- No bijection between the possible epistemic states of the agents and probability 
distributions
- Problematic in dynamical framework: available information evolves
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Probability theory

� In summary probability theory

� Dedicated to random phenomena

� Unable to model uncertainty due to lack of knowledge or missing
information

� Information demanding (requires to known Ω or prior probabilities)

� A pure numeric model (very difficult in the case of subjective
probabilities)

� Complex computation and reasoning

� Additive: error propagation and amplification

� A single measure to represent uncertainty (P(A) implies P(Ac))
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Probability theory

� Probability theory is insufficient to handle all fa cets of uncertainty

� Need for a representation of uncertainty that:

� is less demanding than probability theory

� explicitly allows for incomplete information

� is of qualitative/ordinal nature
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Possibility theory

� Possibility theory (Zadeh, 1978; Dubois & Prade, 1988) belongs to the
family of uncertain modern theories

� Two conjugate measures are used to quantify uncertainty

− The first characterizes the truth of A

− The second characterizes the truth of Ac (complementary of A)

� It is not additive

� It can be purely ordinal or qualitative

� It is tailored to the modelling of uncertainty due to incomplete information

− Human knowledge (incomplete, unreliable)

� It provides a good representation of total ignorance
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Possibility theory

� Possibility distribution: Key concept

− It represents a state of knowledge related to the state of a system

− It models a flexible constraint that restricts the more or less possible values of a
variable

− U a referential (set of the states of the world)

− x an ill-known variable (takes its values in U)

− Possibility distribution πx attached to (a variable) x

πx : U → L

L can be any scale of plausibility totally ordered (finite, often [0, 1], …)

− Conventions

� ∃ u ∈ U, πx(u) = 1, one value is totally possible for u

� πx(u) = 0, u is totally excluded as a value for u

� πx(u) < πx(u'), x = u' is more plausible than x = u
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Possibility theory

� Examples of possibility distribution

− Precise information: x = u0

πx(u) = 1 if x = u0

= 0, otherwise

− Incomplete and clear information: x ∈ A (A ⊂ U, interval for instance)

πx(u) = 1 if x ∈ A

= 0, otherwise

− Nuanced imprecise information: x ∈ F (where F expresses a vague
information modelled thanks to a fuzzy set)

πx(u) = µF(u), ∀ u ∈ U

The possibility that x = u is given by µF(u)

− Total ignorance

πx(u) = 1, ∀ u ∈ U (everything is possible)
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Possibility theory

� Possibilistic uncertainty of an event: Two measures

− The degree of possibility of the event A

− The degree of the impossibility of the opposite event Ac; called also certainty
(necessity) degree

− Assume the available knowledge (of an agent) is represented by π

− How confident are we that x ∈ A (an event A occurs)?

− Degree of possibility that x ∈ A

Π(A) = supx∈A π(x)

To what extent A is consistent with π (some x ∈ A is possible)

− Degree of certainty that x ∈ A

N(A) = 1 − Π(Ac) = infx∈Ac (1 − π(x))

To what extent no element outside A is possible (to what extent π
implies A)
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Possibility theory

� Boolean uncertainty of an event: Two measures

− Assume the available knowledge (of an agent) is x ∈ E (interval, crisp set)

− Degree of possibility that x ∈ A

Π(A) = 1, if A ∩ E ≠ ∅

= 0, otherwise

Logical consistency (to what extent A is not incompatible with E)

− Degree of certainty that x ∈ A

N(A) = 1, if E ⊆ A

= 0, otherwise

Logical deduction (to what extent A is deducted from E)
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Possibility theory

� Boolean uncertainty of an event: Two measures

− Example: x ∈∈∈∈ E = {red, green} : Available knowledge

� A = {blue},

Π(A) = N(A) = 0 A is certainly false

� A = {red, blue, green},

Π(A) = N(A) = 1 A is certainly true

� A = {red},

Π(A) = 1 ; N(A) = 0 (Π(Ac) = 1) 

Nothing about A (Total ignorance)

This representation is not soft, we will provide so me nuance on it
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Possibility theory

� Gradual uncertainty of an event: Two measures

− Assume the available knowledge (of an agent) is x ∈ F (Fuzzy set)

− Degree of possibility that x ∈ A

Π(A) = max (µF(x) | x ∈ A)

− Degree of certainty that x ∈ A

N(A) = max (1 - µF(x) | x ∈ Ac)

Age

1

A

0

µJeune

Π(A)

Age

1

A

0

µJeune

N(A)
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Possibility theory

� Gradual uncertainty of an event: Two measures

− Let π a p.d. that describes the age of a person (on X = [20, 30]) :

π(20) = 0.2, π(21) = 0.3, π(22) = 0.4, π(23) = 0.6, π(24) = 0.8, π(25) = 1,

π(26) = 0.8, π(27) = 0.6, π(28) = 0.4, π(29) = 0.3, π(30) = 0.2

− Let A = {22, 23, 24, 25, 26, 27}: age between 22 and 27

Π(A) = max (π(22), π(23), π(24), π(25), π(26), π(27) ) = 1

− Let A = {27, 28, 29, 30, 31, 32}: age between 27 and 32

Π(A) = max (π(27), π(28), π(29), π(30), π(31), π(32) ) = 0.6

− Now let A = {23, 24}, B = {23, 25, 27}, C = {23, 24, 25, 26, 27, 28},
D = {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}.

Π(Ac) = 1, Π(Bc) = 0.8

Π(Cc) = 0.4, Π(Dc) = 0
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Possibility theory

� Fundamental axioms

− Π(A ∪ B) = max(Π(A), Π(B))

− N(A ∩ B) = min(N(A), N(B))

− Π(∅) = N(∅) = 0 ; Π(U) = N(U) = 1

− N(A) ≤ Π(A)

− N(A) > 0 ⇒ Π(A) = 1

− Max(Π(A), Π(Ac)) = 1: one among A or non A is possible

− Π(A) = Π(Ac) = 1: models total ignorance

� Mind that most of time:

� Π(A ∩ B) < min(Π(A), Π(B))

� N(A ∪ B) > max(N(A), N(B))

� Example: Total ignorance on A and B = Ac
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Possibility theory

� Gradual uncertainty

− Uncertainty about A is represented by two evaluations (N(A), Π(A))

� (1, 1) A is certainly true

� (α, 1) A is somewhat certain

� (0, 1) Total ignorance

� (0, α) Non A is somewhat certain

� (0, 0) A is certainly false

− Ordinal nature of the degrees

� N(A) > N(B) A is more certain than B

− The degrees can be numeric or qualitative: only max/min operators are
used

� No error amplification
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Possibility theory

� Possibilistic Setting

� Uncertainty processing founded on the idea of order

� Only the order is important, not the precise values of the degrees

� The knowledge can be then encoded in a pure qualitative way

� While the probabilistic knowledge must be numeric

� Gradual theory of uncertainty that makes sense in ordinal structures

� Copes with total/partial ignorance

� More adapted to (human) incomplete information
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Belief Functions Theory

� Introduction

− Proposed by Shafer in 1976, also called theory of evidence

− The advantage of the evidence theory is twofold:

� it allows modeling both uncertainty and imprecision (due to the

lack of information)

� it represents a generalization of both probabilistic and possibilistic

models
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Belief Functions Theory

� Illustrative Example

Location of some conferences for the next year, which should be either in
Europe or U.S.A.

Assume that we know the following probability distribution 

<Europe, 0.5> and <U.S.A, 0.5>. 

Now, if it is in Europe, it will be in Paris or London. If it is in US.A., it will be
in Phoenix, Iowa City or Kansas City. But we don't know any probability
distribution for these locations. It is then natural to represent this information
as

<{Paris, London}, 0.5> 

<{Phoenix, Iowa City, Kansas City}, 0.5>

Let A = {Paris, London}, m(A) = 0,5 is the mass belief assigned to A only and
to none of its subsets.
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Belief Functions Theory

� Mass function: Key concept

− Let Ω = {H1, H2, …, H3} a finite set of answers to some question of interest

� Ω : Frame of Discernment

� Hi are mutually exclusive and exhaustive

− Definition

� Defined on sets and not on singletons

� while probability distribution is a point theory

� m : 2Ω → [0, 1] and satisfies m(∅) = 0 and ΣA⊆Ω m(A) = 1

� m(A)

� belief degree assigned exactly to the hypothesis A, and to none more
specific hypothesis

� m(Ω) represents the degree of total ignorance

� The sets A of Ω such that m(A) > 0 are called focal elements of m
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Belief Functions Theory

� Particular cases

− Total ignorance: m(Ω) = 1 (vacuous mass function)

− Certainty: m({ω}) = 1 for one ω ∈ Ω (certain mass function)

− Certain imprecise knowledge: m(A) = 1 for some A ⊆ Ω, A  > 1

(categorical mass function)

− Probabilistic uncertainty: m(A) = 0 for A ⊆ Ω, s.t. A  > 1

(Bayesian mass function)

− Possibilistic uncertainty: focal elements (m(Ai) > 0) A1 ⊆ A2 ⊆ … ⊆ An,

(Consonant mass function)
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Belief Functions Theory

� Example 1: A murder

− A murder has been committed. There are three suspects:

Ω = {Peter, John, Mary}

− A witness saw the murder going away, but he is short-sighted and he only

saw that it was a man. We know that the witness is drunk 20% of the

time.

− This piece of evidence can be represented by

� m({Peter, John)} = 0,8

� m(Ω) = 0,2

− The mass 0,2 is not committed to {Mary}, because the testimony does not

accuse Mary at all!
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Belief Functions Theory

� Example 2: Presidential Election

− For the next presidential election, one wish to make a forecast on the

winning candidate through one or more surveys:

Ω = {G1, G2, D1, D2, D3}

− Left candidates are designed by: G1 ∪G2

− Right candidates are designed by: D1 ∪ D2 ∪ D3

− A survey conducted in the street gives the following results:

� m(G1) = 0,2 m(G2) = 0,05 m(G1 ∪G2) = 0,1

� m(D1) = 0,3 m(D1 ∪ D2 ∪ D3 ) = 0,1

� m(Ω) = 0,25

LIG - Grenoble , 09 February 2016
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Belief Functions Theory

� Example 2: Target Classification

− Let us consider a classification problem of air targets

− Assume one has the following frame of discernment

Ω = {H1, H2, H3} = {Airplane, Hélicoptère, Missile}

− A sensor signals a presence of a fairly quick target

− The result of classification is

� m(Avion) = 0,6

� m(Avion ∪ Missile) = 0,2

� m(Ω) = 0,2

LIG - Grenoble , 09 February 2016
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Belief Functions Theory

� Basic set functions

− Belief function Bel

� Bel(A) = Σ∅≠B⊆A m(B)

� Total mass of information implying the occurrence of A

� Total part of belief that supports A (minimal belief)

− Example

� Bel(A) = m(B1) + m(B2)

− Limit conditions

� Bel(Ω) = 1, Bel(∅) = 0)

Ω

B3
A

B4

B1
B2
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Belief Functions Theory

� Basic set functions

− Plausibility function Pl

� Pl(A) = ΣB∩A≠∅ m(B)

� Total mass of information consistent with A

� Maximal part of belief that could support

− Example

� Pl(A) = m(B1) + m(B2) + m(B3)

− Limit conditions

� Pl(Ω) = 1, Pl(∅) = 0)

Ω

B3
A

B4

B1
B2
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Belief Functions Theory

� Basic Properties

− Belief-Plausibility Relation

� Pl(A) = 1 − Bel(Ac)

� Pl(A) ≥ Bel(A), ∀ A ⊆ Ω

� Pl(A) ≥ P(A) ≥ Bel(A)

− Mass-Belief relation (Moebiïs formula)

� m(A) = ∑∅≠B⊂A (-1)
(|A|-|B|) Bel(B),

− Sub-Additive Measure

� Bel(A ∪ B) ≥ Bel(A) + Bel(B) – Bel(A ∩ B)

� Bel(A) + Bel(Ac) ≤ 1

− Over-Additive Measure

� Pl(A ∪ B) ≤ Pl(A) + Pl(B) – Pl(A ∩ B)

� Pl(A) + Pl(Ac) ≥ 1

P(A ∪∪∪∪ B) = P(A) + P(B) –
P(A ∩∩∩∩ B) 

PA) + P(Ac) = 1



55

Belief Functions Theory

� Basic set functions

− Murder example

− Observe that

Bel(A ∪ B) ≥ Bel(A) + Bel(B) – Bel(A ∩ B)

Pl(A ∪ B) ≤ Pl(A) + Pl(B) – Pl(A ∩ B)

− Bel et Pl are non additive measures

A ∅ {P} {J} {P, J} {M} {P, M} {J, M} Ω

m(A) 0 0 0 0,8 0 0 0 0,2

Bel(A) 0 0 0 0,8 0 0 0 1

Pl(A) 0 1 1 1 0,2 1 1 1
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Belief Functions Theory

� Semantics of m(∅∅∅∅)

− Ω set of possible answers to a question, set of alternatives, ….

− Closed-world assumption: Ω is exhaustive

� m(∅) = 0: Normal mass

− Open-world assumption: Ω is not exhaustive

� Some answers are missed, were inconceivable when modelling the

problem

� m(∅) > 0: Transferable Belief Model

� m(∅) part of belief committed to the assumption ω∉Ω

− From Open-world to Closed-word

� Redistribution & Normalisation
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Belief Functions Theory

� Belief functions-based model

− Information fusion

� Teledetection

� Target identification

− Clustering

− Databases
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Belief Functions Theory

� In summary belief functions

� More general than probabilistic and possibilistic models

� Subjective judgements (agent knowledge)

� Modelling both uncertainty and imprecision

� Well-modelling of total ignorance

� Endowed with a combination rule: Dempster rule

� Very interesting when

� There is a lack of reliability (Sensors, Testimonies)

� Combining heterogeneous information (Multi-sensor fusion, experts
knowledge integration, …)
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Uncertainty in Databases
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Uncertainty modelling

� Causes of uncertainty

− Merging information coming from different sources

− Lack of knowledge about some information of interest

− Error in measurements

− Evolving information

− ….

� Two levels of uncertainty

− Tuple level

− Attribute level

� The matter of interest
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Uncertain Skyline Queries

� Principle

� Given a set r of n-dimensional tuples 

� A skyline query returns the set of non-dominated tuples in r (in the sense of 

Pareto optimality) 

A tupe t dominates another tuple t’ if t is at least as good as t’ in 

all dimensions and strictly better than t’ in at least one dimension. 

� The skyline contains the set of the most interesting tuples (even when

different and often conflicting criteria are involved in the user query)

� The elements of the skyline are incomparable
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� Example

� Let r be an extension of relation Hotel

Uncertain Skyline Queries

� Assume that a person is looking for a
hotel with good price and near the
conference location

� For instance, t5 dominates t1

� Skyline = SSSS = {t3, t5, t2}

� The most interseting hotels
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� Very interesting tool

� Multicriteria decision making

� Multidimensional Data Analysis

� Several extensions

� Numerous works done 

� Algorithmic aspect

� Computational issue

� Relatively less works 

� Skyline semantics / Uncertain Skyline 

� Recently

o Fuzzy Skyline (Hadjali, Pivert, Prade, 2011)

o Skyline relaxation/Refinement (Abbaci et al., 2011)

o Skyline under uncertainty (Elmi et al., 2014) (Bosc et al., 2011)

Uncertain Skyline Queries
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� Let D be an uncertain Database and Q a Skyline query

Uncertain Skyline

Uncertain Skyline

Probabilistic Skyline

� Jiang et al., 2012)
� Pei et al., 2007

Possibilistic Skyline

� Bosc, Hadjali, Pivert 
2011

� Hadjali, Prade, Pivert 
2010

Trust RDF Skyline 

� Abidi, Tobji, 
Hadjali, 2016

Evidential Skyline

� Elmi, Benouaret, 
Hadjali,  2014

� Elmi, Tobji, Hadjali, 
2017
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Possibilistic Skyline

� Possibilistic Databases (Bosc, Hadjali, Pivert, 2011)

� Values of attributes are modelled thanks to possibilistic distributions

� Possibilistic dominance relationship

� Possibilistic Skyline 

#i ac date loc

i1 {1/a1, 0,6/a2} {1/d1, 0,7/d2} c1

i2 {1/a3, 0,6/a4} d1 c2



66

Evidential Skyline

� Evidential Databases (Elmi et al., 2016, 2014)

� Values of attributes are modelled thanks to mass functions

� Evidential dominance relationship

� Evidential Skyline 

� Possible-Words-Based Evidential Skyline: In progress

#p Weight loss Repayment (%)

p1 <0,1/{16, 18}>, <0,9/{16, 18}> <0,3/{90}>, <0,7/{90, 100}> 

p2 <0,7/{7}>, <0,3/{8, 9}> <0,8/{70, 80}>, <0,2/{80}>
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Conclusion
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Conclusion

� Each model is insufficient to handle all facets of uncertain ty

− Some models are more general than others

− Some are more mature than others

− Some have interpretations better fitted to a particular situation or problem

− Some dispose of more convenient tools than others

� The ultimate aim is

− Not to show "which is the best model" but rather

− When, where, why and how each model should be used?

LIG - Grenoble , 09 February 2016
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https://www.lias-lab.fr/members/allelhadjali/


