Atelier VERITA : VERacity In daTA 22 Janvier 2019, Metz

DATA VERACITY ASSESSMENT: HOW A-PRIORI KNOWLEDGE CAN IMPROVE TRUTH DISCOVERY MODELS

Valentina Beretta

Data veracity assessment: Enhancing Truth Discovery using *a priori* knowledge

Outline:

- 1. Motivations behind data veracity assessment
- 2. Truth Discovery: problem and positioning
- 3. Enhancing Truth Discovery models using a priori knowledge
- 4. Conclusion

Data veracity assessment: Enhancing Truth Discovery using *a priori* knowledge

Outline:

1. Motivations behind data veracity assessment

- 1.1 Why studying data veracity?
- 1.2 What are the tasks that can benefit from data veracity?
- 2. Truth Discovery: problem and positioning
- 3. Enhancing Truth Discovery models using a priori knowledge
- 4. Conclusion

Figure 1: This infographic shows what happens online each minute (source https://www.smartinsights.com/wp-content/uploads/2016 /08/What-happens-online-in-60-seconds.png)

The amount of information published on the Web increases over the years

The amount of information published on the Web increases over the years

At the same time, the number of searches to consume this information grows

Figure 1: This infographic shows what happens online each minute (source https://www.smartinsights.com/wp-content/uploads/2016 /08/What-happens-online-in-60-seconds.png)

Figure 1: This infographic shows what happens online each minute (source https://www.smartinsights.com/wp-content/uploads/2016 /08/What-happens-online-in-60-seconds.png)

- · Information retrieval
- · Business intelligence applications
- Decision-making processes
- Knowledge base population

- · Information retrieval
- Business intelligence applications
- Decision-making processes
- Knowledge base population

and the DB pedia	Browse using • Formats •	C Faceted Browser	C Sparql Endpoint
About: F	Pablo Picasso ersona, from Named Graph : http://dbpedia.org, within Data Space : dbpedia.org		
dbo birthDate	 1881-10-25 (xsd:date) 		
dbo birthName	Pablo Diego José Francisco de Paula Juan Nepomuceno María de los Remedios Cipriano de l	la Santísima Trinidad F	Ruiz y Picasso (en)
dbo birthPlace	?		
dbo:deathDate	 1973-04-08 (xsd:date) 1973-4-9 		
dbo.deathPlace	dbr.Mougins		
dbo:field	der:Printmaking		

Data veracity assessment: Enhancing Truth Discovery using *a priori* knowledge

Outline:

1. Motivations behind data veracity assessment

2. Truth Discovery: problem and positioning

2.1 Truth Discovery: state-of-the-art

2.2 Ontologies: definition and enforcement

3. Enhancing Truth Discovery models using *a priori* knowledge

4. Conclusion

Truth Discovery

		S ₁		
Source	Data item	$(d \in D)$		
($s\in S$)	Subject	Predicate		
	Pablo Picasso	bornIn	54	
	Pablo Picasso	bornIn		
	Pablo Picasso	bornIn		
	Pablo Picasso	bornIn		
	Pablo Picasso	bornIn		

S3

Truth Discovery

		S ₁		
Source	Data item	$(d \in D)$		
($s\in S$)	Subject	Predicate	5	
А	Pablo Picasso	bornIn		
В	Pablo Picasso	bornIn		
С	Pablo Picasso	bornIn		
D	Pablo Picasso	bornIn		
E	Pablo Picasso	bornIn		

S3

Truth Discovery

				s ₂	
	Claim (a	bbreviated as	; v _d)	a de la compesión	
Source	Data item	$(d \in D)$			
($s\in S$)	Subject	Predicate		5.	
А	Pablo Picasso	bornIn		4	
В	Pablo Picasso	bornIn			
С	Pablo Picasso	bornIn			
D	Pablo Picasso	bornIn			
E	Pablo Picasso	bornIn			
	$ \begin{bmatrix} \mathbf{Source} \\ \mathbf{Source} \\ (s \in S) \\ \mathbf{A} \\ \mathbf{B} \\ \mathbf{C} \\ \mathbf{D} \\ \mathbf{E} \\ \\ \end{bmatrix} $	Image: Source (s \in S)Claim (a)APablo PicassoBPablo PicassoCPablo Picasso	Claim $I > I > I > I$ Source ($s \in S$)Claim $I > I > I > I$ Source ($s \in S$)Data item $(d \in D)$ SubjectPredicateAPablo PicassobornInBPablo PicassobornInBPablo PicassobornInCPablo PicassobornInCPablo PicassobornInCPablo PicassobornInCPablo PicassobornInCPablo PicassobornInCPablo PicassobornInCPablo PicassobornInCPablo PicassobornInDPablo PicassobornInEPablo PicassobornIn	Claim (abbreviated as v_d)Source ($s \in S$)Claim ($d \in D$) SubjectSubjectPredicateAPablo PicassoBPablo PicassoCPablo PicassoDPablo Picas	$ \begin{array}{c} \hline \\ \hline $

Truth Discovery

Truth Discovery

Truth Discovery

How to identify facts among conflicting claims?

Conflicts can be solved using as discriminating factors:

- frequency of answers
 - voting

•

•

source reliability (or *source trustworthiness*) that can be evaluated based on source content

How does Truth Discovery work?

True information is provided by reliable sources and, in turn, reliable sources claim true information

How does Truth Discovery work?

True information is provided by reliable sources and, in turn, reliable sources claim true information

CLAIMS

- sources
- data items
- values

-		
_		

TRUTH DISCOVERY MODEL

FACTS - true values

Source	Data item	Value	
$(s\in S)$	Subject	Predicate	$(v\in V)$
А	Pablo Picasso	bornIn	Spain
В	Pablo Picasso	bornIn	Madrid
С	Pablo Picasso	bornIn	Europe
D	Pablo Picasso	bornIn	Málaga
E	Pablo Picasso	bornIn	Arles

How does Truth Discovery work?

True information is provided by reliable sources and, in turn, reliable sources claim true information

CLAIMS

- sources
- data items
- values

TRUTH DISCOVERY MODEL
?

FACTS - true values

Source	Data item	Value	
$(s\in S)$	Subject	Predicate	$(v\in V)$
А	Pablo Picasso	bornIn	Spain
В	Pablo Picasso	bornIn	Madrid
С	Pablo Picasso	bornIn	Europe
D	Pablo Picasso	bornIn	Málaga
E	Pablo Picasso	bornIn	Arles

How does Truth Discovery work?

True information is provided by reliable sources and, in turn, reliable sources claim true information

- data items

- sources

- values

CLAIMS

?		

TRUTH DISCOVERY MODEL

FACTS - true values

Source	Data item	Value	
$(s\in S)$	Subject	Predicate	$(v\in V)$
А	Pablo Picasso	bornIn	Spain
В	Pablo Picasso	bornIn	Madrid
С	Pablo Picasso	bornIn	Europe
D	Pablo Picasso	bornIn	Málaga
E	Pablo Picasso	bornIn	Arles

How does Truth Discovery work?

True information is provided by reliable sources and, in turn, reliable sources claim true information

FACTS - true values

- data items
- values

CLAIMS

Source	Data item ($d\in D$)		Value	
($s\in S$)	Subject	Predicate	$(v\in V)$	
А	Pablo Picasso	bornIn	Spain	
В	Pablo Picasso	bornIn	Madrid	
С	Pablo Picasso	bornIn	Europe	
D	Pablo Picasso	bornIn	Málaga	
E	Pablo Picasso	bornIn	Arles	

TRUTH DISCOVERY MODEL

CLAIMS

sourcesdata items

- values

505

How does Truth Discovery work?

True information is provided by reliable sources and, in turn, reliable sources claim true information

FACTS - true values

Source
trustworthiness
t(A)
t(B)
t(C)
t(D)
t(E)

Source	Data item (Value	
$(s\in S)$	Subject	Predicate	$(v \in V)$
А	Pablo Picasso	bornIn	Spain
В	Pablo Picasso	bornIn	Madrid
С	Pablo Picasso	bornIn	Europe
D	Pablo Picasso	bornIn	Málaga
E	Pablo Picasso	bornIn	Arles
	•••	•••	

TRUTH DISCOVERY MODEL

 \neg

How does Truth Discovery work?

True information is provided by reliable sources and, in turn, reliable sources claim true information

	TR	TRUTH DISCOVERY MODEL				
CLAIMS - sources - data items - values	1. Estimatic Iterative cor of value cor source trust	o ns mputations ofidence and cworthiness	?		FAC	TS rue values
					<u></u>	
Source	Source	Data iter	m ($d\in D$)	V	alue	Value
trustworthines	trustworthiness	bject	Predicate	conf	idence	confidence
t(A)	t(A)	blo Picasso	bornIn	c(S	ipain)	c(Spain)
t(B)	t(B)	blo Picasso	bornIn	c(M	adrid)	c(Madrid)
t(C)	t(C)	blo Picasso	bornIn	c(Ei	urope)	c(Europe)
t(D)	t(D)	blo Picasso	bornIn	c(M	álaga)	c(Málaga)
t(E)	t(E)	blo Picasso	bornin	 c(A	Arles)	c(Arles)
					· · · ·	
		J	L	/	х	_J

9

True claims are the ones having the highest confidence

How are trustworthiness and confidence computed?

Fact checker – Objective journalism (1920)

Data Fusion (1960s)

How are trustworthiness and confidence computed?

How are trustworthiness and confidence computed? An example

Sums (Pasternack & Roth, 2010)

$$t^i(s) = lpha \sum\limits_{v_d \in V_s} c^{i-1}(v_d)$$
 .

$$c^i(v_d) = eta \sum\limits_{s \in S_{v_d}} t^i(s)$$

with $d \in D$

D = set of data items V_s = set of claims provided by source s S_{v_d} = set of sources that claim v_d

How are trustworthiness and confidence computed? An example

Sums (Pasternack & Roth, 2010)

$$t^i(s) = lpha \sum\limits_{v_d \in V_s} c^{i-1}(v_d)$$
 .

$$c^i(v_d) = eta \sum\limits_{s \in S_{v_d}} t^i(s)$$

with $d\in D$

D = set of data items V_s = set of claims provided by source s S_{v_d} = set of sources that claim v_d

Example

How to compute *t(A)*?

Source	Data item (Value		
($s\in S$)	Subject	Predicate	($v\in V$)	
A	Pablo Picasso	bornIn	Málaga	
В	Pablo Picasso	bornIn	Málaga	
С	Pablo Picasso	bornIn	Madrid	
А	Claude Monet	bornIn	Paris	
В	Claude Monet	bornIn	France	
Sums (Pasternack & Roth, 2010)

$$t^i(s) = lpha \sum_{v_d \in V_s} c^{i-1}(v_d)$$

$$c^i(v_d) = eta \sum\limits_{s \in S_{v_d}} t^i(s)$$

with $d\in D$

D = set of data items V_s = set of claims provided by source s S_{v_d} = set of sources that claim v_d

Example

How to compute *t*(*A*)?

Source ($s \in S$)	Data item ($d\in D$)		Value
	Subject	Predicate	($v\in V$)
А	Pablo Picasso	bornIn	Málaga
В	Pablo Picasso	bornIn	Málaga
С	Pablo Picasso	bornIn	Madrid
А	Claude Monet	bornIn	Paris
В	Claude Monet	bornIn	France

Sums (Pasternack & Roth, 2010)

$$t^i(s) = lpha \sum\limits_{v_d \in V_s} c^{i-1}(v_d)$$
 .

$$c^i(v_d) = eta \sum\limits_{s \in S_{v_d}} t^i(s)$$

with $d\in D$

D = set of data items V_s = set of claims provided by source s S_{v_d} = set of sources that claim v_d

Example

How to compute *c(bornIn(Pablo Picasso, Málaga))*?

Source ($s \in S$)	Data item ($d\in D$)		Value
	Subject	Predicate	($v\in V$)
А	Pablo Picasso	bornIn	Málaga
В	Pablo Picasso	bornIn	Málaga
С	Pablo Picasso	bornIn	Madrid
А	Claude Monet	bornIn	Paris
В	Claude Monet	bornIn	France
		•	

Sums (Pasternack & Roth, 2010)

$$t^i(s) = lpha \sum\limits_{v_d \in V_s} c^{i-1}(v_d)$$
 .

$$c^i(v_d) = eta \sum\limits_{s \in S_{v_d}} t^i(s)$$

with $d\in D$

D = set of data items V_s = set of claims provided by source s S_{v_d} = set of sources that claim v_d

Example

How to compute *c(bornIn(Pablo Picasso, Málaga))*?

Data item ($d\in D$)		Value
Subject	Predicate	($v\in V$)
Pablo Picasso	bornIn	Málaga
Pablo Picasso	bornIn	Málaga
Pablo Picasso	bornIn	Madrid
Claude Monet	bornIn	Paris
Claude Monet	bornIn	France
	Data item ofSubjectPablo PicassoPablo PicassoPablo PicassoClaude MonetClaude Monet	Data item $(d \in D)$ SubjectPredicatePablo PicassobornInPablo PicassobornInClaude MonetbornInClaude MonetbornIn

Sums (Pasternack & Roth, 2010)

$$t^i(s) = lpha \sum\limits_{v_d \in V_s} c^{i-1}(v_d)$$
 .

$$c^i(v_d) = eta \sum\limits_{s \in S_{v_d}} t^i(s)$$

with $d\in D$

D = set of data items V_s = set of claims provided by source s S_{v_d} = set of sources that claim v_d

Example

How to compute *c(bornIn(Pablo Picasso, Málaga))*?

		Value ($v \in V$)
Subject	Predicate	
Pablo Picasso	bornIn	Málaga
Pablo Picasso	bornIn	Málaga
Pablo Picasso	bornIn	Madrid
Claude Monet	bornIn	Paris
Claude Monet	bornIn	France
	Pablo Picasso Pablo Picasso Pablo Picasso Claude Monet Claude Monet 	Pablo PicassobornInPablo PicassobornInPablo PicassobornInClaude MonetbornInClaude MonetbornIn

- No dependencies
- Value dependencies
- Source dependencies
- Data item dependencies

Data item dependencies

Source dependencies

Data item dependencies

How are trustworthiness and confidence computed?

Maximum Likelihood Estimation (D. Wang et al., 2012)

Gaussian Truth Model (Zhao & Han, 2012)

Latent Truth Model (Zhao et al., 2012)

ı Finder Toniolo, man, 2016)

Discoverv (X.

It is a well-defined knowledge representation that intends to represent knowledge in the most formal and reusable possible way.

"An ontology is an explicit specification of a conceptualization" (Gruber, 1993).

It is a well-defined knowledge representation that intends to represent knowledge in the most formal and reusable way possible.

"An ontology is an explicit specification of a conceptualization" (Gruber, 1993).

The basic elements of an ontology are:

• **Concepts** that represent classes of individuals sharing some properties;

ex:Location	
ex:Continent	
ex:Country	ex:City
	ex:Capital

It is a well-defined knowledge representation that intends to represent knowledge in the most formal and reusable way possible.

"An ontology is an explicit specification of a conceptualization" (Gruber, 1993).

The basic elements of an ontology are:

- **Concepts** that represent classes of individuals sharing some properties;
- Instances that are actual occurrences of concepts;

It is a well-defined knowledge representation that intends to represent knowledge in the most formal and reusable way possible.

"An ontology is an explicit specification of a conceptualization" (Gruber, 1993).

The basic elements of an ontology are:

- **Concepts** that represent classes of individuals sharing some properties;
- Instances that are actual occurrences of concepts;
- Relations that are links or connections between instances, and between instances and concepts.

ex: "http://www.example.com/"

Which knowledge is contained in ontologies?

Ontologies based on Description Logics consist of:

- T-Box or terminological knowledge, knowledge that includes assertions about concepts and relations;
 - A-Box or assertional knowledge, knowledge that includes assertions related to instances of the concepts and relations; the assertions should be expressed conforming to the T-Box.

ex: "http://www.example.com/"

Conclusions

Data veracity assessment: Enhancing Truth Discovery using *a priori* knowledge

Outline:

- 1. Motivations behind data veracity assessment
- 2. Truth Discovery: problem and positioning
- 3. Enhancing Truth Discovery models using a priori knowledge
 - 3.1 Enhancing confidence estimations using value dependencies
 - 3.2 Truth prediction when considering value dependencies
 - 3.3 Enhancing confidence estimations using data item dependencies
 - 3.4 A case study on real-world data

4. Conclusion

Overview of contributions

Enhancing confidence estimations using value dependencies

How to exploit value dependencies?

Intuition: Where was Pablo Picasso born?

The two sources answer with different values, BUT ...

How to exploit value dependencies?

Intuition: Where was Pablo Picasso born?

BUT ...

knowing that Málaga is in Spain

we can say that the source **explicitly** stating that "Pablo Picasso was born in *Málaga*" **implicitly** supports that "Pablo Picasso was born in *Spain/Europe/..."*.

This interpretation is in accordance with the mathematical framework of belief function introduced by Dempster-Shafer theory.

How can value dependencies be modeled?

Several standards organizations attempt to create resources that contain **dedicated terms** (values) of specific domains; for instance:

- SNOMED for medical terms
- Gene Ontology for biological terms

Usually these terms are organized in **hierarchies** based on taxonomic, meronomic and implication relations.

How can value dependencies be modeled?

Several standards organizations attempt to create resources that contain **dedicated terms** (values) of specific domains; for instance:

- SNOMED for medical terms
- Gene Ontology for biological terms

biological process

system development

.uk/QuickGO

Usually these terms are organized in **hierarchies** based on taxonomic, meronomic and implication relations.

TD-poset approach

Sums (Pasternack & Roth, 2010)

$$egin{aligned} t^i(s) &= lpha \sum\limits_{v_d \in V_s} c^{i-1}(v_d) \ &\ c^i(v_d) &= eta \sum\limits_{s \in S_{v_d}} t^i(s) \end{aligned}$$

with $d \in D$

D = set of data items V_s = set of claims provided by source s S_{v_d} = set of sources that claim v_d

TD-poset approach

Sums (Pasternack & Roth, 2010)

$$t^i(s) = lpha \sum_{v_d \in V_s} c^{i-1}(v_d)$$

$$c^i(v_d) = eta \sum\limits_{s \in S_{v_d}} t^i(s)$$

with $d\in D$

D = set of data items V_s = set of claims provided by source s S_{v_d} = set of sources that claim v_d

TD-poset approach

Sums (Pasternack & Roth, 2010)

with $d \in D$

$$t^i(s) = lpha \sum_{v_d \in V_s} c^{i-1}(v_d)$$

$$c^i(v_d) = eta \sum\limits_{s \in S_{v_d}} t^i(s)$$

Sums_{PO}

$$t^i(s) = lpha \sum_{v_d \in V_s} c^{i-1}(v_d)$$
 $c^i(v_d) = eta \sum_{s \in S_{v_d+}} t^i(s)$ with $S_{v_d+} = \{s \in S_{v_d'} | v_d' \in V_d \wedge$

 $v_d' \preceq v_d\}$

D = set of data items V_s = set of claims provided by source s S_{v_d} = set of sources that claim v_d S_{v_d+} = set of sources that claim v_d or more specific values (that implicitly support v_d)

$$egin{aligned} \mathsf{Sums}_{_{\mathcal{PO}}}\ t^i(s) &= lpha \sum\limits_{v_d \in V_s} c^{i-1}(v_d)\ c^i(v_d) &= eta \sum\limits_{s \in S_{v_d+}} t^i(s)\ ext{with}\, S_{v_d+} &= \{s \in S_{v_d'} | v_d' \in V_d \land\ v_d' \preceq v_d\} \end{aligned}$$

D = set of data items V_s = set of claims provided by source s S_{v_d} = set of sources that claim v_d S_{v_d+} = set of sources that claim v_d or more specific values (that implicitly support v_d)

trustworthiness of source that provides a value value value

$$egin{aligned} \mathsf{Sums}_{\mathsf{PO}}\ t^i(s) &= lpha \sum\limits_{v_d \in V_s} c^{i-1}(v_d)\ c^i(v_d) &= eta \sum\limits_{s \in S_{v_d+}} t^i(s)\ \mathrm{with}\, S_{v_d+} &= \{s \in S_{v_d'} | v_d' \in V_d \wedge\ v_d' ee v_d\} \end{aligned}$$

D = set of data items V_s = set of claims provided by source s S_{v_d} = set of sources that claim v_d S_{v_d+} = set of sources that claim v_d or more specific values (that implicitly support v_d)

D = set of data items V_s = set of claims provided by source s S_{v_d} = set of sources that claim v_d S_{v_d+} = set of sources that claim v_d or more specific values (that implicitly support v_d)

trustworthiness of source that provides a value

value confidence

$$Sums_{PO}$$

$$t^{i}(s) = \alpha \sum_{v_{d} \in V_{s}} c^{i-1}(v_{d})$$

$$c^{i}(v_{d}) = \beta \sum_{s \in S_{v_{d}^{+}}} t^{i}(s)$$
with $S_{v_{d}^{+}} = \{s \in S_{v_{d}^{'}} | v_{d}^{'} \in V_{d} \land v_{d}^{'} \leq v_{d}\}$

$$D = \text{set of data items}$$

$$V_{s} = \text{set of claims provided by source } s$$

$$S_{v_{d}} = \text{set of sources that claim} v_{d}$$

$$M = S_{v_{d}} = \text{set of sources that claim} v_{d}$$

 S_{v_d+} = set of sources that claim v_d or more specific values (that implicitly support v_d)

TD-*poset* approach: which are the consequences of considering partial order of values within TD?

Confidence **estimations monotonically increase** with respect to the partial order of values

The **highest confidence** is always assigned to the **most general value**; it is always supported by all the others

The truth consists in a **true value set** and not in a single value anymore, i.e. all generalizations of a true value are true as well

Truth prediction when considering value dependencies

Experiments: generation of synthetic datasets

The generation of synthetic datasets is controlled by the several parameters, e.g. source coverage, source trustworthiness, ...).

The parameter that permits to generate different kinds of datasets is:

Experiments: generation of synthetic datasets

The generation of synthetic datasets is controlled by the several parameters, e.g. source coverage, source trustworthiness, ...).

The parameter that permits to generate different kinds of datasets is:

Considering a given predicate, sources can be:

- EXPERTS on a topic
 - they often provide specific (fine-grained) true values since they well known the topic, e.g. an art expert should know the city of birth of Picasso
- NON-EXPERTS on a topic
 - they provide fine-grained true values when they known the information, but they provide general true values rather than false values when they do not know the topic, e.g. I known the exact birth location of Picasso even if I am not an art expert

Experiments: generation of synthetic datasets

The generation of synthetic datasets is controlled by the several parameters, e.g. source coverage, source trustworthiness, ...).

The parameter that permits to generate different kinds of datasets is:

Considering a given predicate, sources can be:

- EXPERTS on a topic
 - they often provide specific (fine-grained) true values since they well known the topic, e.g. an art expert should know the city of birth of Picasso
- NON-EXPERTS on a topic
 - they provide fine-grained true values when they known the information, but they provide general true values rather than false values when they do not know the topic, e.g. I known the exact birth location of Picasso even if I am not an art expert

TSaC_{TRUST}

Experiments: Recall of Sums_{PO} on synthetic datasets

 θ = 0.0 et δ = 1.0

returning not ordered values

Sums_{PO}: what have we learned?

Considering *a priori* knowledge in the form of a **partial order of values,** we exploit the **deductive reasoning** capabilities offered by ontologies:

- different values are not always independent
- a partial order of values enables to distinguish when two different values have similar semantics
- a partial order of values is useful and permits to make performance more robust independently from the type of sources that is considered

Enhancing confidence estimations using value dependencies

Conclusions

How to exploit data item dependencies?

People speaking the official language of a country were usually born in that country.

This knowledge can be used to increase the confidence about some information.

How data item dependencies can be modeled?

Recurrent patterns are modeled by **rules** that are inferred from an ontology.

A **rule** *r* is an implication from a set of atoms called body to a set of atoms called head:

 $r: B_1 \land B_2 \land ... \land B_{|B|} \rightarrow H_1 \land H_2 \land ... \land H_{|H|}$

It indicates that when observing some conditions (reported in the body), the occurrence of other conditions (reported in the head) is expected.

ex: "http://www.example.com/"

How to exploit rules to improve TD?

increasing confidence of values supported by rules

The rule body indicates on which basis (which properties and values) entities are considered to be similar.

How to exploit rules to improve TD?

ONTOLOGY	recurrent patterns
	expressed by rules
AMIE+ (Galárraga et al, 20	15)
I	
speaks (x, y) Λ spoker	$1\ln(y,z) \rightarrow bornln(x,z)$
]
Y	

The rule body indicates on which basis (which properties and values) entities are considered to be similar.

Example: If we known that Picasso speaks Spanish, then the confidence of value Spain increases

increasing confidence of values supported by rules

Source	Data item (d	a item ($d\in D$) Value	
($s\in S$)	Subject	Predicate	($v \in V$)
А	Pablo Picasso,	bornIn	Spain 🔶
В	Pablo Picasso,	bornIn	Madrid
С	Pablo Picasso,	bornIn	Europe
А	Claude Monet,	bornIn	Málaga
В	Claude Monet,	bornIn	Arles
	./		

TD using Rules: TDR approach

 S_{v_d} = set of sources that claim v_d

Sums

$$t^{i}(s) = \alpha \sum_{v_{d} \in V_{s}} c^{i-1}(v_{d})$$

$$t^{i}(s) = \alpha \sum_{v_{d} \in V_{s}} c^{i-1}_{RULES}(v_{d})$$

$$t^{i}(s) = \alpha \sum_{v_{d} \in V_{s}} c^{i-1}_{RULES}(v_{d})$$

$$c^{i}_{RULES}(v_{d}) = \frac{1}{norm_{v_{d}}} [(1 - \gamma)c^{i}(v_{d}) + \gamma boost(d, v_{d})]$$
ontology point of view
Source point of view
source point of view

TD using Rules: TDR approach

Sums
$$t^i(s) = lpha \sum\limits_{v_d \in V_s} c^{i-1}(v_d)$$
 $c^i(v_d) = eta \sum\limits_{s \in S_{v_d}} t^i(s)$

$$egin{aligned} \mathsf{Sums}_{\mathsf{RULES}} \ t^i(s) &= lpha \sum\limits_{v_d \in V_s} c^{i-1}_{\mathsf{RULES}}(v_d) \ c^i_{\mathsf{RULES}}(v_d) &= rac{1}{\mathit{norm}_{v_d}} \left[(1-\gamma)c^i(v_d) + \gamma \, \emph{boost}(d,v_d)
ight] \ boost(d,v_d) &pprox rac{\sum\limits_{r \in R^v_d} \mathit{score}(r)}{\sum \, \mathit{score}(r)} \end{aligned}$$

 $r \in R_d$

 D_{s} = set of claims provided by source V_{s} = set of claims provided by source s $S_{v_{d}}$ = set of sources that claim v_{d}

The increase of confidence must be proportional to the percentage of rules that support the provided value (called **approving rules**) among the considered rules (called **eligible rules**).

Rules that support the considered claim

Rules that can potentially support the considered claim since they concern similar data item subject

The increase of confidence must be proportional to the percentage of rules that support the provided value (called **approving rules**) among the considered rules (called **eligible rules**).

Example: evaluating the confidence of bornIn(Pablo Picasso, Spain)

\leq	К
	spokenIn(Spanish, Spain)
	speaks(Picasso,Spanish)
	resident(Picasso,France)

 r_1 : speaks(x,y) ∧ spokenIn(y,z) → bornIn(x,z)

The increase of confidence must be proportional to the percentage of rules that support the provided value (called **approving rules**) among the considered rules (called **eligible rules**).

Example: evaluating the confidence of *bornIn(Pablo Picasso, Spain)*

\leq	К	\geq
	spokenIn(Spanish, Spain)	
	speaks(Picasso,Spanish)	
	resident(Picasso,France)	
		\sim

 r_1 : speaks(x,y) Λ spokenIn(y,z) \rightarrow bornIn(x,z)

ELIGIBLE RULE

The increase of confidence must be proportional to the percentage of rules that support the provided value (called **approving rules**) among the considered rules (called **eligible rules**).

Example: evaluating the confidence of *bornIn(Pablo Picasso, Spain)*

 r_1 : speaks(x,y) ∧ spokenIn(y,z) → bornIn(x,z)

NOT ELIGIBLE RULE

the body is not verified when instantiating the variables with respect to the subject Pablo Picasso

How to combining value partial order and rules to improve TD?

The rule *resident*(x, France) → *bornIn*(x,France) explicitly support the value France.

It implicitly supports the value Europe and all the other generalizations.

Experiments: Results of Sums_{RULES} and Sums_{RULES&PO} on synthetic datasets

Experiments: Results of Sums_{RULES} and Sums_{RULES&PO} on synthetic datasets

Sums_{RULES} and Sums_{RULES&PO}: what have we learned?

Considering *a priori* knowledge in the form of **rules** exploits **inductive reasoning** capabilities offered by ontologies:

- Rules help to identify similar data items and identify the most probable true value for them
- Rules are more effective when the IC of the values they infer is high

A case study on real-world data

Real-world datasets: application context

Recall obtained on real-world data

Sums	Data A	Data B
Original model	0.448	0.473
with partial ordering	0.517	0.566
with partial ordering and rules	0.565	0.590
with partial ordering and rules + post-processing	0.631	0.614

•

•

Sums_{RULES&PO} on a real world scenario: what have we learned?

- *Sums* rewards sources having high coverage and penalizes sources having low coverage;
- It makes a distinction between **reliable sources** (that always provide true values) of **different coverage levels**
 - wikipedia.org (high coverage) is correctly considered a highly reliable source
 - a fan club website (low coverage), specialized on its favorite actor, is incorrectly considered unreliable
- In real-world datasets there are very few sources having high coverage, while the majority of them have a low coverage, i.e power law phenomenon is over expressed.

Recall obtained on real-world data

Sums	Data A	Data B
Original model	0.448	0.473
with partial ordering	0.517	0.566
with partial ordering and rules	0.565	0.590
with partial ordering and rules + post-processing	0.631	0.614

Existing Model	Data A	Data B
Truth Finder	0.646	0.622
2-Estimates	0.631	0.635
3-Estimates	0.008	0.612
Cosine	0.640	0.635
AccuCopy	0.638	0.640
Accu	0.638	0.660
Depen	0.431	0.494
AccuSim	0.413	0.448
SimpleLCA	0.631	0.660
GuessLCA	0.644	0.646

Data veracity assessment: Enhancing Truth Discovery using *a priori* knowledge

Outline:

- 1. Motivations behind data veracity assessment
- 2. Truth Discovery: problem and positioning
- 3. Enhancing Truth Discovery models using a priori knowledge

4. Conclusion

- 4.1 Summary
- 4.2 Limitations and future studies

Summarising

Enhancing truth discovery models using **value dependencies**

- · Value dependencies are modeled using a **partial order of values** extracted from an ontology
- Confidence estimations formulas are modified taking this additional information into account
 - · Adaptation of Sums approach
- \cdot Definition of a new truth prediction phase that is able to select the expected true value

Summarising

Enhancing truth discovery models using **value dependencies**

- · Value dependencies are modeled using a **partial order of values** extracted from an ontology
- · Confidence estimations formulas are modified taking this additional information into account
 - · Adaptation of Sums approach
- · Definition of a new **truth prediction phase** that is able to select the expected true value

Enhancing truth discovery models using data item dependencies

- · Data item dependencies are modeled using **rules** extracted from an ontology
- Confidence estimations formulas are modified taking this additional information into account, as well as partial order of values
 - · Adaptation of Sums approach

Summarising

Enhancing truth discovery models using **value dependencies**

- · Value dependencies are modeled using a **partial order of values** extracted from an ontology
- \cdot Confidence estimations formulas are modified taking this additional information into account
 - · Adaptation of Sums approach
- · Definition of a new **truth prediction phase** that is able to select the expected true value

Enhancing truth discovery models using data item dependencies

- · Data item dependencies are modeled using **rules** extracted from an ontology
- Confidence estimations formulas are modified taking this additional information into account, as well as partial order of values
 - · Adaptation of Sums approach

Evaluation of the proposed approaches on **synthetic and real-world dataset**

- \cdot Definition of protocols to generate synthetic datasets and collect real-world data
- Experiments conducted using the several proposed models

•

Limitations and future studies

Some interesting further studies are:

- incorporating the proposed rationale in other existing models
- adapting the proposed models in order to deal with non-functional and dynamic predicates
- assessing the reliability of the considered *a priori* knowledge
- proposing a solution to automatically estimate the best configuration of model parameters, such as the weight that controls the importance given to rules during the confidence estimation phase
 - proposing models that deal with the over expression of power-law phenomena in real-world datasets

Data veracity assessment: Enhancing Truth Discovery using a priori knowledge

Take-away messages:

- All tasks/applications that consume Web data require to check data veracity automatically
- We propose to incorporate into the existing models prior knowledge in the form of partial order among values and rules
- The proposed approaches open up new research perspectives that should be explored in order to make data increasingly reliable